Analysis 2, Summer 2024 List 2 Path integrals, calculations with gradients

62. Draw the curve parameterized by

$$x = 5\cos(t), \qquad y = 5\sin(t)$$

with $\frac{\pi}{2} \leq t \leq \pi$. This is a quarter-circle.

63. Draw the curve described by by x = t, $y = t^3 - t$ with $-2 \le t \le 2$. This is part of $y = x^3 - x$.

64. Draw the curve described by

$$\vec{r} = \begin{bmatrix} 1\\ 3 \end{bmatrix} + \begin{bmatrix} 4\\ -1 \end{bmatrix} t$$

with $0 \le t \le 1$. This is the line segment from (1,3) to (5,2).

A **parameterization** of a curve is a continuous vector function $\vec{r} : [a, b] \to \mathbb{R}^n$, where [a, b] is some interval.

- 65. Give a parameterization of the line segment from that starts at (0,0) and ends at (7,2). One option is x = t, $y = \frac{2}{7}t$, $0 \le t \le 7$. Another option is x = 7t, y = 2t, $0 \le t \le 1$. There are many other correct parameterization.
- 66. Calculate $\int_C f \, ds$ where f(x, y) = x y and C is the line segment that starts at (2, 0) and ends at (4, 5).

Using
$$x = t, y = \frac{5}{2}t - 5, 2 \le t \le 4$$
, we get $\int_{2}^{4} \frac{1}{4}\sqrt{29}(10 - 3t) dt = \boxed{\frac{\sqrt{29}}{2}}$.
Using $\vec{r} = (1 - t) \begin{bmatrix} 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 4 \\ 5 \end{bmatrix}, 0 \le t \le 1$, we get $\int_{0}^{1} \sqrt{29}(2 - 3t) dt = \boxed{\frac{\sqrt{29}}{2}}$
Any other parameterization should also give this same answer.

- 67. Integrate x y along the line segment from (2,0) to (4,5). This is the same as the previous task.
- 68. Integrate xe^y along the half-circle $\{(x, y) : x^2 + y^2 = 1, x \ge 0\}$. $e \frac{1}{e}$
- 69. (a) Integrate $f(x,y) = \sin(\pi y)$ along the line segment from (0,1) to (1,0). $\frac{2\sqrt{2}}{\pi}$
 - (b) Integrate $f(x,y) = \sin(\pi y)$ along the line segment from (1,0) to (0,1). $\frac{2\sqrt{2}}{\pi}$
 - (c) Compare your answers to parts (a) and (b). They are the same. The "orientation" of a path does not affect the path integral of scalar function.
- 70. Calculate $\int_C (2yx^2 4x) \, ds$ where C is the bottom half of the circle of radius 3 centered at the origin. -108
- 71. Integrate f(x,y) = y along the path shown here:

- $16 + 8\sqrt{2}$
- 72. (a) Integrate f(x, y, z) = xy + z along the "helix" curve $\vec{r} = [\cos(t), \sin(t), t]$ with $0 \le t \le 4\pi$. $8\sqrt{2}\pi^2$
 - (b) Integrate f(x, y, z) = xy + z along the line segment from (1, 2, 3) to (4, 5, 6).

- 73. Find the gradient of e^{x+y^2} at the point (x, y) = (-5, 2). $f'_x(x, y) = e^{x+y^2}$ and $f'_y(x, y) = 2ye^{x+y^2}$, so $f'_x(-5, 2) = e^{-5+4} = 1/e$ and $f'_y(-5, 2) = 2(2)(1/e) = 4/e$. Therefore $\nabla f(-5, 2) = \boxed{[1/e, 4/e]}$.
- 74. Calculate both f(1,6) and $\nabla f(1,6)$ for $f(x,y) = x^4 + y \ln(x)$. $f(1,6) = 1^4 + 6 \ln(1) = 1 + 0 = 1$. $f'_x(x,y) = 4x^3 + \frac{y}{x}$ and $f'_y(x,y) = \ln(x)$, so $f'_x(1,6) = 4(1)^3 + \frac{6}{1} = 10$ and $f'_y(1,6) = \ln(1) = 0$. Therefore $\nabla f(1,6) = 10$.
- 75. Give the gradient of $\cos(x + y^2)$. (This will be a 2D vector whose entries are formulas with x and y.) $\begin{bmatrix} -\sin(x + y^2) \\ -2y\sin(x + y^2) \end{bmatrix}$
- 76. Compute the *length* of the gradient of $x^2 \sin(y)$ at the point $(4, \frac{\pi}{3})$. (This is just a number.)

$$\nabla f(4, \frac{\pi}{3}) = \begin{bmatrix} 4\sqrt{3} \\ 8 \end{bmatrix}$$
, so $|\nabla f(4, \frac{\pi}{3})| = \boxed{\sqrt{112} = 4\sqrt{7}}$.

77. Give
$$\nabla g$$
 for $g(x,y) = y^3 \cos(xy) + \sqrt{x}$.
$$\begin{bmatrix} \frac{1}{2\sqrt{x}} - y^4 \sin(xy) \\ 3y^2 \cos(xy) - xy^3 \sin(xy) \end{bmatrix}$$

78. Calculate the gradient of $f(x, y, z) = xz + e^{y+z}$, which is defined as the 3D vector

$$abla f = egin{bmatrix} f'_x \ f'_y \ f'_z \end{bmatrix} = egin{bmatrix} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \ rac{\partial f}{\partial z} \end{bmatrix}$$

 $\begin{bmatrix} z\\ e^{y+z}\\ x+e^{y+z} \end{bmatrix}$

79. For $f = \frac{x}{yz}$, calculate $|\nabla f(1, -1, 2)|$. $\frac{3}{4}$

80. For
$$f(x,y) = \ln(x) + e^y$$
, calculate $\left(\frac{12}{13}\hat{i} + \frac{5}{13}\hat{j}\right) \cdot \nabla f(4,0)$. $\begin{bmatrix} 12/13\\5/13 \end{bmatrix} \cdot \begin{bmatrix} 1/4\\1 \end{bmatrix} = \begin{bmatrix} \frac{8}{13} \end{bmatrix}$

81. For $f(x,y) = \frac{x}{y}$, give an example of a vector that is perpendicular to $\nabla f(12,2)$. $\nabla f(12,2) = [\frac{1}{2}, -3]$, and a vector perpendicular to this is any non-zero scalar multiple of $[3, \frac{1}{2}]$, such as [6, 1].

Starred tasks (\mathfrak{A}) use ideas or methods that are not required for this course. But they can be interesting to think about. $\stackrel{\text{tr}}{\approx} 82. \text{ Find a function } f(x, y, z) \text{ for which } \nabla f = \begin{bmatrix} 2xz^3 - y\sin x \\ \cos x \\ 3x^2z^2 \end{bmatrix}.$

Any function $f(x, y, z) = x^2 z^3 + y \cos(x) + C$ with C constant.

$$\stackrel{\sim}{\succ} 83. \text{ If } \vec{F} = \begin{bmatrix} x^3 y \\ e^{yz} \\ y \end{bmatrix}, \text{ calculate } \nabla \cdot \vec{F} = \underbrace{3x^2y + ze^{yz}}_{add} \text{ and } \nabla \times \vec{F} = \underbrace{(1 - ye^{yz})\hat{\imath} - x^3\hat{k}}_{\frac{\partial}{\partial y}}$$
using the idea that $\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}.$

 $\stackrel{\wedge}{\sim} 84$. Circles can be in 3D space! Integrate $f(x, y, z) = x^2 y^2$ over the circle in the vertical plane y = 4 with center (0, 4, 0) and radius 2. 128 π

See https://tutorial.math.lamar.edu/Solutions/CalcIII/LineIntegralsPtI/ Prob5.aspx

 ≈ 85 . The sets of points

$$A = \{(x, y) : x = \sin t, \ y = (\sin t)^2, \ 0 \le t \le \pi\}$$

$$B = \{(x, y) : x = \ln t, \ y = (\ln t)^2, \ 1 \le t \le e\}$$

are exactly the same (they are both $\{(x, y) : y = x^2, \ 0 \le x \le 1\}$). Why are

$$\int_0^{\pi} \sqrt{(x')^2 + (y')^2} \, dt = \int_0^{\pi} \sqrt{(\cos t)^2 + (2\sin t \cos t)^2} \, dt$$

$$\int_1^e \sqrt{(x')^2 + (y')^2} \, dt = \int_1^e \sqrt{\left(\frac{1}{t}\right)^2 + \left(\frac{2\ln t}{t}\right)^2} \, dt$$
not equal?

not equal?

The description used for A traces out the path *twice* because the values of $x = \sin t$ go from 0 (when t = 0) to 1 (when $t = \frac{\pi}{2}$) and then back to 0 again (when $t = \pi$). If instead $0 \le t \le \frac{\pi}{2}$ is used then in fact

$$\int_{0}^{\pi/2} \sqrt{(\cos t)^{2} + (2\sin t\cos t)^{2}} \, \mathrm{d}t = \int_{1}^{e} \sqrt{\left(\frac{1}{t}\right)^{2} + \left(\frac{2\ln t}{t}\right)^{2}} \, \mathrm{d}t$$
are equal: they are both $\frac{2\sqrt{5} + \ln(2 + \sqrt{5})}{4}$.