Analysis 2, Summer 2024

List 2

Path integrals, calculations with gradients
62. Draw the curve parameterized by

$$
x=5 \cos (t), \quad y=5 \sin (t)
$$

with $\frac{\pi}{2} \leq t \leq \pi$. This is a quarter-circle.

63. Draw the curve described by by $x=t, y=t^{3}-t$ with $-2 \leq t \leq 2$. This is part of $y=x^{3}-x$.

64. Draw the curve described by

$$
\vec{r}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{c}
4 \\
-1
\end{array}\right] t
$$

with $0 \leq t \leq 1$. This is the line segment from $(1,3)$ to $(5,2)$.

A parameterization of a curve is a continuous vector function $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$, where $[a, b]$ is some interval.
65. Give a parameterization of the line segment from that starts at $(0,0)$ and ends at (7,2). One option is $x=t, y=\frac{2}{7} t, 0 \leq t \leq 7$. Another option is $x=7 t, y=2 t, 0 \leq t \leq 1$. There are many other correct parameterization.
66. Calculate $\int_{C} f \mathrm{~d} s$ where $f(x, y)=x-y$ and C is the line segment that starts at $(2,0)$ and ends at $(4,5)$.
Using $x=t, y=\frac{5}{2} t-5,2 \leq t \leq 4$, we get $\int_{2}^{4} \frac{1}{4} \sqrt{29}(10-3 t) \mathrm{d} t=\frac{\sqrt{29}}{2}$.
Using $\vec{r}=(1-t)\left[\begin{array}{l}2 \\ 0\end{array}\right]+t\left[\begin{array}{l}4 \\ 5\end{array}\right], 0 \leq t \leq 1$, we get $\int_{0}^{1} \sqrt{29}(2-3 t) \mathrm{d} t=\frac{\sqrt{29}}{2}$.
Any other parameterization should also give this same answer.
67. Integrate $x-y$ along the line segment from $(2,0)$ to $(4,5)$. This is the same as the previous task.
68. Integrate $x e^{y}$ along the half-circle $\left\{(x, y): x^{2}+y^{2}=1, x \geq 0\right\}$. e- $\frac{1}{e}$
69. (a) Integrate $f(x, y)=\sin (\pi y)$ along the line segment from $(0,1)$ to $(1,0)$. $\frac{2 \sqrt{2}}{\pi}$
(b) Integrate $f(x, y)=\sin (\pi y)$ along the line segment from $(1,0)$ to $(0,1)$. $\frac{2 \sqrt{2}}{\pi}$
(c) Compare your answers to parts (a) and (b). They are the same. The "orientation" of a path does not affect the path integral of scalar function.
70. Calculate $\int_{C}\left(2 y x^{2}-4 x\right) \mathrm{d} s$ where C is the bottom half of the circle of radius 3 centered at the origin. -108
71. Integrate $f(x, y)=y$ along the path shown here:

$$
16+8 \sqrt{2}
$$

72. (a) Integrate $f(x, y, z)=x y+z$ along the "helix" curve $\vec{r}=[\cos (t), \sin (t), t]$ with $0 \leq t \leq 4 \pi .8 \sqrt{2} \pi^{2}$
(b) Integrate $f(x, y, z)=x y+z$ along the line segment from $(1,2,3)$ to $(4,5,6)$. $42 \sqrt{3}$
The gradient of $f(x, y)$ is the vector $\left[\begin{array}{l}f_{x}^{\prime} \\ f_{y}^{\prime}\end{array}\right]=\left[\begin{array}{l}\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y}\end{array}\right]$. We write ∇f for this vector.
73. Find the gradient of $e^{x+y^{2}}$ at the point $(x, y)=(-5,2)$.
$f_{x}^{\prime}(x, y)=e^{x+y^{2}}$ and $f_{y}^{\prime}(x, y)=2 y e^{x+y^{2}}$, so $f_{x}^{\prime}(-5,2)=e^{-5+4}=1 / e$ and $f_{y}^{\prime}(-5,2)=2(2)(1 / e)=4 / e$. Therefore $\nabla f(-5,2)=[1 / e, 4 / e]$.
74. Calculate both $f(1,6)$ and $\nabla f(1,6)$ for $f(x, y)=x^{4}+y \ln (x)$.
$f(1,6)=1^{4}+6 \ln (1)=1+0=1$.
$f_{x}^{\prime}(x, y)=4 x^{3}+\frac{y}{x}$ and $f_{y}^{\prime}(x, y)=\ln (x)$, so $f_{x}^{\prime}(1,6)=4(1)^{3}+\frac{6}{1}=10$ and $f_{y}^{\prime}(1,6)=\ln (1)=0$. Therefore $\nabla f(1,6)=[10,0]$.
75. Give the gradient of $\cos \left(x+y^{2}\right)$. (This will be a 2 D vector whose entries are formulas with x and y.) $\left[\begin{array}{c}-\sin \left(x+y^{2}\right) \\ -2 y \sin \left(x+y^{2}\right)\end{array}\right]$
76. Compute the length of the gradient of $x^{2} \sin (y)$ at the point $\left(4, \frac{\pi}{3}\right)$. (This is just a number.)

$$
\nabla f\left(4, \frac{\pi}{3}\right)=\left[\begin{array}{c}
4 \sqrt{3} \\
8
\end{array}\right], \text { so }\left|\nabla f\left(4, \frac{\pi}{3}\right)\right|=\sqrt{112}=4 \sqrt{7} .
$$

77. Give ∇g for $g(x, y)=y^{3} \cos (x y)+\sqrt{x}$. $\left[\begin{array}{c}\frac{1}{2 \sqrt{x}}-y^{4} \sin (x y) \\ 3 y^{2} \cos (x y)-x y^{3} \sin (x y)\end{array}\right]$
78. Calculate the gradient of $f(x, y, z)=x z+e^{y+z}$, which is defined as the 3D vector

$$
\nabla f=\left[\begin{array}{l}
f_{x}^{\prime} \\
f_{y}^{\prime} \\
f_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]
$$

79. For $f=\frac{x}{y z}$, calculate $|\nabla f(1,-1,2)| \cdot \boxed{\frac{3}{4}}$
80. For $f(x, y)=\ln (x)+e^{y}$, calculate $\left(\frac{12}{13} \hat{\imath}+\frac{5}{13} \hat{\jmath}\right) \cdot \nabla f(4,0) \cdot\left[\begin{array}{c}12 / 13 \\ 5 / 13\end{array}\right] \cdot\left[\begin{array}{c}1 / 4 \\ 1\end{array}\right]=\left[\frac{8}{13}\right.$.
81. For $f(x, y)=\frac{x}{y}$, give an example of a vector that is perpendicular to $\nabla f(12,2)$. $\nabla f(12,2)=\left[\frac{1}{2},-3\right]$, and a vector perpendicular to this is any non-zero scalar multiple of $\left[3, \frac{1}{2}\right]$, such as $[6,1]$.

Starred tasks ($\bar{\aleph}$) use ideas or methods that are not required for this course.
But they can be interesting to think about.
is 82. Find a function $f(x, y, z)$ for which $\nabla f=\left[\begin{array}{c}2 x z^{3}-y \sin x \\ \cos x \\ 3 x^{2} z^{2}\end{array}\right]$.
Any function $f(x, y, z)=x^{2} z^{3}+y \cos (x)+C$ with C constant.
*83. If $\vec{F}=\left[\begin{array}{c}x^{3} y \\ e^{y z} \\ y\end{array}\right]$, calculate $\nabla \cdot \vec{F}=3 x^{2} y+z e^{y z}$ and $\nabla \times \vec{F}=\left(1-y e^{y z}\right) \hat{\imath}-x^{3} \hat{k}$ using the idea that $\nabla=\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]$.

E84. Circles can be in 3D space! Integrate $f(x, y, z)=x^{2} y^{2}$ over the circle in the vertical plane $y=4$ with center $(0,4,0)$ and radius 2 . 128π

See https://tutorial.math.lamar.edu/Solutions/CalcIII/LineIntegralsPtI/ Prob5.aspx
85. The sets of points

$$
\begin{aligned}
& A=\left\{(x, y): x=\sin t, y=(\sin t)^{2}, 0 \leq t \leq \pi\right\} \\
& B=\left\{(x, y): x=\ln t, y=(\ln t)^{2}, 1 \leq t \leq e\right\}
\end{aligned}
$$

are exactly the same (they are both $\left\{(x, y): y=x^{2}, 0 \leq x \leq 1\right\}$). Why are

$$
\begin{aligned}
& \int_{0}^{\pi} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \mathrm{~d} t=\int_{0}^{\pi} \sqrt{(\cos t)^{2}+(2 \sin t \cos t)^{2}} \mathrm{~d} t \\
& \int_{1}^{e} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \mathrm{~d} t=\int_{1}^{e} \sqrt{\left(\frac{1}{t}\right)^{2}+\left(\frac{2 \ln t}{t}\right)^{2}} \mathrm{~d} t
\end{aligned}
$$

not equal?
The description used for A traces out the path twice because the values of $x=\sin t$ go from $0($ when $t=0)$ to 1 (when $t=\frac{\pi}{2}$) and then back to 0 again (when $t=\pi$). If instead $0 \leq t \leq \frac{\pi}{2}$ is used then in fact

$$
\int_{0}^{\pi / 2} \sqrt{(\cos t)^{2}+(2 \sin t \cos t)^{2}} \mathrm{~d} t=\int_{1}^{e} \sqrt{\left(\frac{1}{t}\right)^{2}+\left(\frac{2 \ln t}{t}\right)^{2}} \mathrm{~d} t
$$

are equal: they are both $\frac{2 \sqrt{5}+\ln (2+\sqrt{5})}{4}$.

